Verwertungsorientierte Preisindikatoren für Futtererbsen und Ackerbohnen im Vergleich zur veröffentlichten Marktpreisberichterstattung

Ergebnisse aus dem EU-Projekt LegValue

4. Deutsche Hochschulforum in Kiel
16.05.2019

Bruno Kezeya Sepngang (Marcus Mergenthaler; Bernhard C. Schäfer, Ina Stute; Wolfgang Stauss)
Gliederung

• Hintergründe des Leguminosenmarktes
• Ansätze für die Entwicklung von Preisindikatoren
  • Regressionsanalyse mit Substituten
  • Futterwert
  • Wert pro Einheit im Außenhandel
  • Vergleich der Indikatoren
• Vorläufige Schlussfolgerungen
  und offene Fragen
Hintergründe des Leguminosenmarktes

• unbedeutende Verwendung in Mischfutterindustrie
  – Angegebene Begründung: schlechte Verfügbarkeit
  – SES und RES: Leichte Verfügbarkeit und etablierte Bezugsquellen
• wenig bekannte Preisnotierungen für Leguminosen
  → Nischenmärkte

• Schlechte einzelkulturbezogene Wirtschaftlichkeit
• Hauptnutzung inner- und zwischenbetrieblich
• Import von Eiweißträgern (Sojabohne und –mehl)
Hintergründe zur Preisfindung der Leguminosen

Schwierige Preisfindung bei heimischen Körnerleguminosen

• Käufermarkt: Landhändler, Futtermittelhersteller und Verarbeiter:
  • Modellbasiert auf mehreren Substituten (Soja, Raps und Weizen)
  • Ableitung aus nur einer Art wie Weizen
  • Preisvergleich der vergangenen Jahre
    • unter der Berücksichtigung der Produktion
  • Informelle Gespräche zwischen den Akteuren
  • Strategische Preisberichterstattung

→ Asymmetrisches Informationsniveau
→ Pfadabhängig niedrige Marktpreisberichterstattung?
→ Verwertungsorientierte Preisindikatoren?
Preisindikatoren von Leguminosen aus Regressionsanalysen basierend auf Preise von Substituten

**Datenbasis:**

- monatliche Erzeugerpreise („frei Erfasserlager“)
- von Januar 2007 bis August 2018 (140 Monate)
- Von der AMI (Agrarmarkt Informations-Gesellschaft mbH)
- Für das gesamte Bundesgebiet
Vergleich der Gleichungen zur Schätzung der Erzeugerpreise von Futtererbsen und Ackerbohnen in €/t.

<table>
<thead>
<tr>
<th>unabhängige Variablen/Substitute</th>
<th>Raps</th>
<th>Rapsextraktionsschrot (RES)</th>
<th>Sojaextraktionsschrot 43/44% (SES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futterweizen (FW)</td>
<td></td>
<td>Gleichungen zur Schätzung des Erzeugerpreises von Futtererbsen (FE) in €/t.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>( P_{FE} = 61,978 + 0,513<em>P_{FW} + 0,118</em>P_{Raps} )</td>
<td>( P_{FE} = 29,469 + 0,577<em>P_{FW} + 0,179</em>P_{SES} )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( R^2 = 0,678 )</td>
<td>( R^2 = 0,754 )</td>
</tr>
<tr>
<td>Gleichungen zur Schätzung des Erzeugerpreises von Ackerbohne (AB) in €/t.</td>
<td></td>
<td>( P_{AB} = 45,919 + 0,581<em>P_{FW} + 0,068</em>P_{Raps} )</td>
<td>( P_{AB} = -12,275 + 0,516<em>P_{FW} + 0,263</em>P_{SES} )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( R^2 = 0,624 )</td>
<td>( R^2 = 0,808 )</td>
</tr>
</tbody>
</table>

Die Bestimmtheitmaß \( (R^2) \) gibt an, welcher Anteil der Varianz durch dieses Modell erklärt wird.
Geschätzter Erzeugerpreis („frei Erfasseralager“) von Futtererbsen (FE) und Ackerbohnen (AB) basierend auf den Preisen von Futterweizen und Sojaextraktionsschrot (43/44% RP) in Deutschland.

\[ \text{Ø |Differenz|} = 13 \, \text{€/t} \]

\[ \text{Ø |Differenz|} = 10 \, \text{€/t} \]
Zusammenfassung der Ergebnisse zu dem Preisindikator basierend auf der Regressionsanalyse

• Das Modell basiert auf der Verwertung von Körnerleguminosen in der Fütterung.
• Das Modell kann zur Vorhersage der Marktpreise verwendet werden.
• Zu beachten: Produktionsmenge, Anbausystem, Region, Qualität und Zeitpunkt.
• Der Indikator schätzt die Preise nicht einseitig.
• Der abnehmende Trend der Differenz zwischen Preisindikator und Preisen deutet auf eine Unterbewertung der beiden Körnerleguminosen im Zeitablauf durch den Preisindikator hin.
Futterwert von Leguminosen in der Schweinefütterung als Preisindikator

Datenbasis:
• monatliche Erzeugerpreise („frei Erfasseralager“)
• von Januar 2007 bis August 2018 (140 Monate)
• Von der AMI
• Für das gesamte Bundesgebiet

• Inhaltsstoffe zur Ermittlung der Futterwerte

<table>
<thead>
<tr>
<th>Futtermittel</th>
<th>Energie (MJ)</th>
<th>pcv. Lysin (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winterweizen (12 % RP)</td>
<td>13,7</td>
<td>3,0</td>
</tr>
<tr>
<td>Sojaextraktionsschrot SES (44 % RP)</td>
<td>13,0</td>
<td>23,7</td>
</tr>
<tr>
<td>Ackerbohnen (26 % RP)</td>
<td>13,0</td>
<td>13,4</td>
</tr>
<tr>
<td>Futtererbsen (22 % RP)</td>
<td>13,8</td>
<td>13,3</td>
</tr>
</tbody>
</table>

Modifiziert nach DLG, 2014
Formeln zur Schätzung des Wertes von Futtererbsen (FE) und Ackerbohnen (AB) in der Schweinefütterung: Berechnung nach der Austauschmethode Löhr.

\[ P_{FE} = 0,54 \times P_{FW} + 0,49 \times P_{SES} \]

\[ P_{AB} = 0,47 \times P_{FW} + 0,51 \times P_{SES} \]

Wobei,

\( P_{FE} \) der Futterwert von Futtererbsen ist und \( P_{AB} \) der Futterwert für Ackerbohnen, beide in €/t;

\( P_{FW} \) ist der Erzeugerpreis von Futter Weizen und \( P_{SES} \) ist der Preis von Sojaextraktionsschrot, beide in €/t.
Futterwerte von Futtererbsen (FE) und Ackerbohnen (AB) in der Schweinefütterung gegenüber den Erzeugerpreisen in Deutschland

\[ \text{\( \bar{D} \text{ifferenz} = 77 \text{ €/t} \)}\]

\[ \text{\( \bar{D} \text{ifferenz} = 91 \text{ €/t} \)}\]
Zusammenfassung der Ergebnisse zu dem Preisindikator basierend auf dem Futterwert

• Der Futterwert ist deutlich höher als die Marktpreise.
• Dieser Wert ist aktuell nur in der innerbetrieblichen Verwendung der Leguminosen erzielbar.
• Werden Transport-, Lager- und Verarbeitungskosten des Handels abgezogen, können sie auch als Preisindikatoren auf dem Markt verwendet werden.
• Korrelation zw. Futterwert und Erzeugerpreis.
• Die Differenz zwischen dem Futterwert und dem Erzeugerpreis ist sehr unregelmäßig im Laufe der Jahre.
  • Mit einem positiven Trend -> höhere Produktionsmengen die Verhandlungsmacht des Handels stärken -> kontraproduktiv auf die Preisbildung für die Landwirte.
Preisindikator von Leguminosen durch den Wert je Einheit bei Import und Export

Der Wert pro Einheit im Außenhandel (engl. Unit value) ergibt sich aus dem Außenhandelswert (in Euro) dividiert durch die Außenhandelsmenge (in Tonnen)

**Datenbasis:**
- monatliche Werte von von Januar 2007 bis August 2018
- von Destatis
- für das gesamte Bundesgebiet
Wert je Einheit Export und Wert je Einheit Import von Futtererbsen (FE) gegenüber den Erzeugerpreisen in Deutschland

- Wert je Einheit Export höher als den Wert je Einheit Import
- Konstanter Trend der Differenz (W.J.E. Imp. – Erzeugerpreis)
- Steigender Trend der Differenz (W.J.E. Exp. – Erzeugerpreis)

\[ \bar{\text{Diff. (Export – Markt)}} = 172 \, \text{€/t} \]
\[ \bar{\text{Diff. (Import – Markt)}} = 142 \, \text{€/t} \]
Wert je Einheit Export und Wert je Einheit Import von Ackerbohnen (AB) gegenüber den Erzeugerpreisen in Deutschland

- Wert je Einheit Import höher als den Wert je Einheit Export
- Konstanter Trend der Differenz (W.J.E. Exp. – Erzeugerpreis)
- Sinkender Trend der Differenz (W.J.E. Imp. – Erzeugerpreis)

\[ \text{\textcopyright Diff. (Export – Markt)} = 185 \text{ \€/t} \]
\[ \text{\textcopyright Diff. (Import – Markt)} = 310 \text{ \€/t} \]
Vergleich der unterschiedlichen Preisindikatoren für Futtererbsen (FE)

- Hochwertigste Verwertungsmöglichkeit im Außenhandel
- Starke Volatilität des Erbsenwertes im Außenhandel
Vorläufige Schlussfolgerungen und offene Fragen

• Die Preisfindung von Leguminosen ist erschwert, weil die Märkte dafür fragmentiert und intransparent sind. Der Wettbewerbsmechanismus offener, transparenter Märkte funktioniert nicht.

→ Sind Leguminosen-Märkte durch spezifische Qualitätsanforderungen zu inhomogen für eine valide, zentrale Preisberichtserstattung?

• Offizielle Preisberichterstattung bezieht sich vermutlich auf niedrigste Qualitätsstufen. Strategische Preismeldungen sind zu vermuten.

→ Aufklärung durch alternative Preismeldesysteme der Landwirtschaft, die Qualitätsunterschiede berücksichtigen?

→ Wo kann eine kontinuierlich arbeitende Preisberichterstattung angesiedelt werden?
Vorläufige Schlussfolgerungen und offene Fragen

• Im Außenhandel werden die höchsten Verwertungsmöglichkeiten erreicht. Absolute Mengen sind jedoch gering.

  → Wie können Akteure des Außenhandels am Preismeldesystem beteiligt werden?

• Entwickelte Preisindikatoren können eine Preisband darstellen um Marktteilnehmer und Analysten eine bessere Preisorientierung für Verhandlungen zu geben. Mögliche Preisverzerrungen durch das Ausüben von Marktmacht können ausgeglichen werden.

  → Wer hat Interesse an mehr Markttransparenz und wer an weniger?


  → Was kann politisch für Leguminosen getan werden?
Danke für Ihre Aufmerksamkeit

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727672

Anhang
Vergleich der unterschiedlichen Preisindikatoren für Ackerbohnen (AB)

- Hochwertigste Verwertungsmöglichkeit im Außenhandel
- Starke Volatilität des Ackerbohnenwertes im Außenhandel
Vergleich der Preisindikatoren für Futtererbsen (FE) nach der Austauschmethoden Löhr (für GVO- und GVO-freie Futter) und aus der Regressionsanalyse
Weitere Preisindikatoren für Leguminosen

Korrelationen der Erzeugerpreise von Leguminosen mit den Preisen von verschiedenen Futtermitteln, Dünger und Fleisch.

Die Preise der drei untersuchten Variablen-Gruppen können bei der Preisfindung der Leguminosen als Indikatoren genutzt werden.


<table>
<thead>
<tr>
<th>Variablen</th>
<th>Futtererbsen</th>
<th>Ackerbohnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alleinfuttermittel zur Mittelmast-Schwein</td>
<td>r 0,894**</td>
<td>0,901**</td>
</tr>
<tr>
<td>Milchleistungsfutter</td>
<td>N 135</td>
<td>129</td>
</tr>
<tr>
<td>Geflügelalleinfuttermittel (Legehennen)</td>
<td>r 0,892**</td>
<td>0,901**</td>
</tr>
<tr>
<td>Kalkammonsalpeter 27% Stickstoff</td>
<td>r 0,486**</td>
<td>0,574**</td>
</tr>
<tr>
<td>Harnstoff granuliert 46% Stickstoff</td>
<td>N 54</td>
<td>45</td>
</tr>
<tr>
<td>Ammonnitrat 28% Stickstoff</td>
<td>r 0,659**</td>
<td>0,722**</td>
</tr>
<tr>
<td>Triplesuperphosphat 46% P₂O₅</td>
<td>N 54</td>
<td>45</td>
</tr>
<tr>
<td>Kornkali 40% K₂O</td>
<td>r 0,544**</td>
<td>0,604**</td>
</tr>
<tr>
<td>Nutztkälber Fleckvieh</td>
<td>r 0,325**</td>
<td>0,260**</td>
</tr>
<tr>
<td>Hähnchen Ø alle Zielgewichte</td>
<td>N 135</td>
<td>129</td>
</tr>
<tr>
<td>Puten Hähne 18,5 kg</td>
<td>r 0,703**</td>
<td>0,727**</td>
</tr>
<tr>
<td>Schweine NRW</td>
<td>N 135</td>
<td>129</td>
</tr>
<tr>
<td>Jungbullen NRW</td>
<td>r 0,600**</td>
<td>0,571**</td>
</tr>
</tbody>
</table>

**. Die Korrelation (r) ist auf dem Niveau von 0,01 (2-seitig) signifikant. *. Die Korrelation (r) ist auf dem Niveau von 0,05 (2-seitig) signifikant. N. Stichprobe.